

A M E R I C A N A N G U S A S S O C I A T I O N 3201 Frederick Avenue • St. Joseph, MO 64506 • (816) 383-5100 • Fax (816) 233-9703 • E-mail: angus@angus.org

American Angus Heritage

ARS NATIONAL PROGRAMS

Evolving in to the Era of the Genome

Ronnie D. Green National Program Leader Food Animal Production USDA / ARS

3201 Frederick Avenue * St. Joseph, MO 64506 * (816) 383-5100 * Fax (816) 233-9703 * E-mail: angus@angus.org

Late 1950s-Early 1960s

AMERICAN ANGUS ASSOCIATION — THE BUSINESS BREED

3201 Frederick Avenue • St. Joseph, MO 64506 • (816) 383-5100 • Fax (816) 233-9703 • E-mail: angus@angus.org

Fall 2004

Expected progeny difference (EPD) and \$Value averages, standard deviations (SD) and minimum/maximum.

Trait	No. EPD	No. records	Avg.	SD	Min	Мах
Birth weight, Ib.	4,501,628	3,604,414	1.9	2.1	-10.2	13.7
Weaning direct, Ib.	5,208,022	4,245,870	17	17	-60	80
Weaning maternal(milk), lb.	5,208,022		8	9	-38	44
Yearling weight, Ib.	5,208,022	2,107,425	31	31	-80	138
Yearling height, in.	631,736	344,082	.3	.4	-1.9	2.5
Mature weight, Ib.	2,477	21,165	4	29	-120	154
Mature height, in.	2,477	21,165	.7	.7	-2.3	3.9
Scrotal circumference, cm	574,081	282,021	.10	.43	-3.69	3.18
Carcass weight, Ib.	5,767	76,109	2	9	-43	53
Marbling score	5,767	76,109	.07	.16	65	.99
Ribeye area, sq. in.	5,767	76,109	.07	.17	75	.87
12th-rib fat thickness, in.	5,767	76,109	.000	.019	111	.096
% retail product	5,767	76,109	.05	.31	-1.25	1.47
Ultrasound intramuscular fat, %	730,617	381,882	.00	.13	70	1.08
Ultrasound ribeye area, sq. in.	730,617	387,311	.03	.20	-1.05	1.29
Ultrasound fat thickness, in.	730,617	389,251	.000	.014	097	.112
Ultrasound % retail product	730,617	389,251	.03	.24	-1.43	1.40
Current Sires ¹	No. Indexes					
Feedlot Value (\$F), \$ per head	21,041		12.79	11.98	-56.36	74.50
Grid Value (\$G), \$ per head	18,162		12.21	6.14	-25.85	42.58
Beef Value (\$B), \$ per head	18,162		24.39	10.70	-49.48	62.75

50th anniversary of DNA structure

DNA Genetic Code Dictates Amino Acid Identity and Order

DNA

Sequence

Is

AlaArgAspAsnCysGrowing12345Protein
Chain

A Mammalian Genome

- ! 3 billion base pairs (A, G, C, and T)
- Every cell has two copies (alleles) of each chromosome
- Estimated 30,000 to 40,000 genes (two copies or alleles of each gene)
- Maybe 400,000 proteins produced

Genomics

- Structural
 - The construction of high-resolution genetic, physical, and transcript maps of an organism
 - Highest resolution physical map of an organism is its complete DNA sequence
- Functional
 - Global (genome-wide) approaches
 to analyze gene function and expression

Genomics Research

- Develop road maps of each chromosome (genetic linkage maps)
- ! Utilize linkage maps to identify chromosomal regions
- ! 'Fine map' the region to identify the gene

Genomics Research

Cattle linkage map ! First goal 300 markers ! Today > 9000 markers Pig linkage map ! >5000 markers Sheep linkage map ! > 1200 markers, ~50% bovine markers work

Cattle Chromosome 12

Marker Association

Genetic Merit

Family from sire 921690 (PA)

Traits Measured

Growth traits:

- Birth weight (kg)
- Weaning weight (kg)
- Yearling weight (kg)
- Postweaning average daily gain (kg/d)

Predicted carcass traits:

-Retail product yield (%)

- Fat yield (%)
- Bone yield (%)
- Dressing percent (%)

Measured carcass traits:

- Hot carcass weight (kg)
- Fat depth (cm)
- Marbling score
- Longissimus muscle area (cm²)
- USDA yield grade
- -Est. kidney, pelvic, & heart fat (%)
- -Rib bone
- -Ribfat
- Ribmus
- Warner-Bratzler shear force
 - 2 or 3 d postmortem (kg)
- Warner-Bratzler shear force 14 d postmortem (kg)

GENOME SCAN RESULTS IN ALL RESOURCE FAMILIES

Mapping a trait to a gene

Sequences of base pairs mapping

Fine Mapping

- Use additional DNA markers and animals to refine the location of the QTL (gene)
- Use human and mouse mapping information (Comparative Mapping)

Fine Mapping Double Muscling

Myostatin (MSTN) location on BTA2

Piedmontese Myostatin Allele

MATERIALS AND METHODS

Selection and testing of progeny

Thirteen breed associations (representing 14 breeds) provided over 8,500 progeny of the most widely used sires within their respective breeds, primarily from commercial cowherds, for this research. The final analysis excluded data from 883 progeny because of incorrect animal or carcass identification. One or more reference sires of each breed were used in each test herd to tie contemporary groups together within breeds. The number of progeny included in the study from each breed was dependent on registration numbers, where breeds with larger numbers of animals registered had a greater number of progeny. Each breed association coordinated the following aspects of the study for its respective breed:

1. Sire selection 2. Progeny testing

FIGURE 1: CARCASS MERIT PROJECT OVERVIEW, AND PARTICIPATING BEEF BREEDS.

Note: All U.S. beef breed associations were invited to participate.

segregation, project guidelines specified first, that each breed designate 10 bulls as DNA sires and secondly, that each DNA sire have 50 progeny discovers additional carcass merit QTL. Project managers advised breed associations to collect additional blood samples to keep on file for their

TABLE 2 Significance levels of QTL effects from multiple trait hypothesis tests. ⁴											
Trait	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11
Shear Force	0.5	0.5	0.5	0.32	0.25	0.008	0.5	0.040	0.16	0.49	0.5
Overall Tnd	0.5	0.5	0.5	0.37	0.44	0.001	0.5	0.030	0.49	<mark>0.004</mark>	0.5
Fat Thickness	0.1	0.5	$0.48 \\ 0.44$	0.043	0.030	0.12	0.2	0.5	0.1	0.34	0.33
Marbling	0.15	0.4		0.31	0.32	0.11	0.12	0.5	0.06	0.37	0.002
Ribeye Area	0.5	0.5	0.18	0.44	0.32	0.011	0.008	0.037	0.5	0.5	0.5
Hot Carc Wt	0.5	0.5	0.19	0.47	0.5	0.47	0.006	0.002	0.5	0.5	0.49
Flavor	0.5	0.45	0.5	0.5	0.28	0.3	0.34	0.022	0.32	0.11	0.33
Overall Tnd	0.5	0.29	0.5	0.5	0.45	0.01	0.35	0.015	0.5	0.24	0.5
Juiciness	0.5	0.33	0.46	0.11	0.5	0.107	0.024	$0.49 \\ 0.09$	0.5	<mark>0.050</mark>	0.41
Overall Tnd	0.5	0.37	0.49	0.31	0.5	0.021	0.45		0.5	0.14	0.46

^aSignificance levels expressed to one or two decimal places are textbook values, those expressed to three decimal places are from permutation tests.

TABLE 3											
PERCENTAGE OF PHENOTYPIC VARIANCE ACCOUNTED FOR BY EACH QTL.											
Trait Name	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11
Shear Force	1	0	1	3	3	12	0	6	3	1	0
Overall Tnd	0	1	1	1	0	10	2	8	0	4	0
Myofib Tnd	1	2	0	1	0	9	2	8	0	4	0
Cn Tiss Tnd	3	1	0	0	0	12	4	8	0	2	0
Cooking Loss	4	2	5	0	3	1	0	0	2	2	1
Flavor	1	1	0	3	2	1	3	3	2	5	3
Juiciness	0	4	1	6	0	6	7	0	0	5	3
Marbling	1	2	2	2	1	4	4	1	4	1	8
Fat Thick	3	1	3	5	6	4	3	2	2	2	2
Internal Fat	0	7	0	3	5	2	0	1	2	1	1
Hot Carc Wt	1	0	2	0	0	2	6	10	0	1	3
Ribeye Area	0	0	4	2	3	7	7	3	0	1	1

							4						
			C	ORRELA"	TIONS A	MONG	4 FFFFCTS		1.6				
(P	ROPORT	ION OF I	PHENOT	YPIC VA	RIANCE	ACCOU	NTED F	OR BY C	ŬL 6 c	N THE	DIAGON	NALS).	
Trait Name	Trt	WBSF	OT	MT	СТ	CL	FL	JC	MB	FT	KPH	HCW	REA
Shear Force	WBSF	0.12											
Overall Tnd	OT	-0.96	0.10										
Myofib Tnd	MT	-0.99	1.00	0.09									
Cn Tiss Tnd	CT	-0.89	0.95	0.96	0.12								
Cooking Loss	CL	0.67	-0.86	-0.84	-0.76	0.01							
Flavor	FL	0.31	0.62	0.32	0.57	-0.57	0.01						
Juiciness	JC	0.11	0.04	0.04	0.27	-0.74	0.79	0.06					
Marbling	MB	0.23	-0.57	-0.41	-0.62	0.90	-0.85	-0.24	0.04				
Fat Thick	FT	-0.40	0.43	0.28	0.03	0.18	0.85	0.70	0.84	0.04			
Internal Fat	KPH	-0.79	0.93	0.99	0.70	-0.90	-0.43	-0.66	-0.19	0.41	0.02		
Hot Carc Wt	HCW	-0.23	0.18	0.02	-0.16	-0.51	-0.35	-0.45	0.87	0.54	1.00	0.02	
Ribeye Area	REA	0.17	0.09	0.14	0.06	0.47	-0.57	-0.77	0.35	0.91	0.21	-0.02	0.07

Important genes affecting beef production traits

- **!** Thyroglobulin- marbling (GS Marbling)
- ! Calpastatin- tenderness (GS Tenderness)
- ! Calpain- tenderness (two SNP)
- ! Leptin- fat deposition (SNP)
- **! DGAT fat deposition in milk**
- ! Somatostatin -- marbling
- ! ROCR (Marbling) Australia CSIRO??

We are at a Critical Juncture.

Current limitations in genomics research

- ! The few genes that we have been identified only explain a small part of genetic variation
- ! Time and expense to identify the majority of genes that affect a single trait
- ! Need for more genomics-enabling infrastructure

50th Anniversary of DNA Structure – THE FINISHED HUMAN GENOME

Genomic Sequencing?

Interagency Coordination Essential....

- Interagency Working Group on Domestic Animal Genomics
 - Executive Office of the President
 - Office of Science & Technology Policy (OSTP)
 - National Science & Technology Council (NSTC)
 - Committee on Science (co-Chairs NIH, NSF, OSTP)
- Established in winter 2002
- Charter members
 - DOE, FDA, NIH, NSF, OMB, OSTP, USDA
- Chairperson -- Joseph Jen, USDA/REE Executive Director – Ronnie Green, USDA/ARS

genome.gov National Human Genome Research Institute National Institutes of Health

International Collaboration

Australia -- \$1M
Genome Canada -- \$5M
New Zealand -- \$1M

Domestic US Collaboration

- NIH / NHGRI -- \$25M
- State of Texas \$10M
- USDA -- \$11M
- Beef Councils (Natl., TX, SD) \$0.8M

Project Total = \$53M

Genomic Sequencing?

Launch: Dec. 2003 Expected Finish: early 2005

Breeding on a Chip

USDA Challenges in Applying MAS in the Beef Industry:

- Complex Pedigree
- Many Small Families
- Missing Marker Data
- Censored Data

USDA Marker Assisted Selection in the Twinning Population

Marker Residual Chr. Chr. Chr. Adjusted 7:125 Animal EPD 7:60 5:40 **EPD** 979447 22 +6+336 +5-2 979405 27 +333 +5+3979413 20 +2 31 +6+4979328 19 +3+127

Consortiun

results into National Cattle Evaluations

Genomics Research

- ! Carcass traits- marbling, tenderness
- ! Growth bend growth curve
- ! Feed efficiency expensive to measure
- ! Reproduction- dissect components
 - ! Twinning heritability from 7 to 35%
- ! Animal health-difficult to measure
- ! Select for multiple traits
- ! Management "by genotype"

Genomics Research -- Health

- ! PrP Gene Scrapie, CWD, BSE?
- ! HEXA UK identified for BSE?
- ! FMD
- ! Fescue Toxicosis
- ! New vaccine development
- ! New drug targets

Business Models???

SAVAGE, Md. and MINNEAPOLIS - June 11, 2002

MetaMorphix signs deal to develop genetic selection tool using cattle genome -- Exclusive agreement with Cargill's Caprock Cattle Feeders and Excel Corporation expected to result in superior beef for

consumers

MERIAL

Enter site in:

GeneSTAR Pricing - International

GeneSTAR Marbling

 Online Ordering -International

(GeneSt🛠 ?)

 GeneSTAR Pricing -International

	•
No. of Samples	Price per sample US \$
25 samples or less	US\$85.00
26 to 100 samples	US\$65.00
101 to 500 samples	US\$55.00
Over 500 samples	US\$45.00

GeneSTAR Tenderness 2

No. of Samples	Price per sample US\$
25 samples or less	US\$100.00
26 to 100 samples	US\$80.00
101 to 500 samples	US\$70.00
Over 500 samples	US\$60.00

Gene STAR Marbling and Gene STAR Tenderness 2

Price for tests submitted as a single sample

No. of Samples	Price per sample US\$
25 samples or less	US\$160.00
26 to 100 samples	US\$120.00
101 to 500 samples	US\$95.00
Over 500 samples	US\$80.00

Figure 2. Relationship between % unacceptable carcases as judged by consumers and Warner Bratzler (WB) Shear Force values (deviation from mean) for 0, 1 and 2-STAR animals